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Abstract. We present some analytical results for the Potts model, using the symmetry 
group (acting on its parameters) generated by the inverse relation and other symmetries 
of this model. In particular, we find the critical manifolds and we study the relationship 
between this group and the Lee-Yang singularities in the complex plane. For those cases 
where the symmetry group is finite, we look at the possible consequences for some 
colouring problems in graph theory and more specifically for chromatic polynomials. 

1. Introduction 

Recently, an exact functional relation which holds for the partition function of different 
models in statistical mechanics has been derived, in particular for the Potts model 
(Jaekel and Maillard 1982a). It is called an inverse relation. This symmetry together 
with obvious geometrical symmetries generates an infinite discrete group acting on 
the parameters of the corresponding models. In this paper we study some properties 
resulting from this group structure, using the specific case of the Potts model. In 
particular, we study three main points. Firstly, we generalise the duality argument 
(Kramers and Wannier (1941), to be referred to as KW) in order to find the critical 
manifold, even in the case where the model is not self-dual. Secondly, we show the 
relationship between the Lee-Yang singularities (Lee and Yang 1952) of the partition 
function and the group structure. Finally, we consider the particular case when the 
group becomes finite, showing some connections with different map colouring problems 
in graph theory as well as with other problems of mathematical physics. 

In all these three parts, we compare our results obtained using the group structure 
successively with exact known results, conjectured results and already known or new 
numerical studies. 

The main results of this paper are as follows. Using the automorphy group we 
propose a new method to localise the critical manifold of a given lattice model. In 
particular we recover all known (or conjectured) results for Potts models on various 
two-dimensional lattices. For the three-dimensional Potts model we observe the 
non-aigebraic character of the critical manifold with regard to the parameters of the 
model. The automorphy group allows us to obtain, in a unified way, the partition 
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function for the ferromagnetic and antiferromagnetic Potts model. When expressed 
in the natural variables associated with the automorphy group, the Lee-Yang circle 
theorem (at q 2 4 )  takes a simple form. Using new numerical results on the square 
lattice, we check a possible extension of this theorem at q < 4. 

2. Critical manifolds 

2.1. Square lattice 

2.1.1. The group Structure for the Potts model. Let us consider the q-state two- 
dimensional anisotropic Potts model for a square lattice (for a recent review of the 
Potts model see Wu (1982)).  If the two spins ui and ai belonging to 2, are in the same 
state, the statistical weight associated with this vertical (horizontal) bond will be c ( 6 ) ;  
if they are not, it will be +l. 

Therefore the partition function is 

where the products are to be taken over all the vertical and horizontal bonds. The 
sum is to be taken over all the configurations of spins {v}. 

The inverse relation ( I )  on this partition function takes the form (Jaekel and 
Maillard 1982aj 

Z ( b ,  c ) Z ( l / b ,  2 -4 - c )  = (C - 1)(1-q  -c) 

I: (6 ,  ~ ) + ( l / b ,  2 - q  - c )  

( 2 )  

( 3 a )  

and can be combined with the obvious geometrical symmetry (s): 

Z ( b ,  c )  = Z ( c ,  6 )  (4) 

s: (b,  c )  + (c,  b ) .  P a )  
These two involutions can be viewed as the generators of a discrete symmetry group 
G, which has the structure 

0 + 2 + G + 22 + 0. 

G possesses a speciql element 

1 1    SI)^: ( b , c ) +  2 - q - - ,  ( b 2 - q - c  

for which the transformations act separately on b and c. These two transformations 
have the same fixed points: 

q+= 1-54 * i [q (q  -4)]1’2. (7) 

x = ( b  - q + ) / ( b  -q-) Y = ( c  - q+)/(c  - 4-1 

It is then convenient to consider new variables x and y : 

(8) 

for which the actions of the elements of G take the simple forms 

1: (x, y j +  q2C/y) ( 3 6 )  
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s: ( X , Y ) - , ( Y t X )  ( 5 b )  

(so2: ( x ,  Y )  --* (q2,x,  y / 4 :  1. ( 6 b )  

D: ( X ,  Y ) +  ( - q + / Y ,  - 4 + / X ) .  

Note that in terms of these new variables, the duality transformation becomes 

(9) 

D does not belong to G, but commutes with all its elements. 

2.1.2. Critical manifold. It is well known that it is possible to localise the critical 
temperature, when it is unique, as the stable point of KW duality. Thus it is natural 
to extend this line of argument, by taking other symmetries into account in the cases 
when no self-dual property is available. It can be seen that if ( x o ,  yo) is a singularity 
of the partition function, then the automorphic properties associated with the group 
G imply that the images of this point under G are also singularity points. Therefore 
the critical manifold has to be stable under the action of the group G. In general, 
manifolds which are stable under such a discrete infinite group are very complicated. 
We still assume that the critical manifold f ( x ,  y )  = 0 is an algebraic variety. Such an 
assumption is supported by almost all the exactly known critical manifolds. (It is not 
clear if this algebraic property comes from the dimensionality or the complete integra- 
bility of these problems or any other reason.) 

We make the following change of variables: U = x y  and v = x / y .  We are now 
concerned with an algebraic variety g(u ,  U )  = 0 stable under G and in particular under 
the action of  SI)^: 

(6c 1 
Hence, the function g must be stable under the transformation U + q h .  However, 
this property (periodicity up to a multiplicative factor) is in contradiction with the 
algebraic character of g, unless g does not depend on U. Then the critical variety is 
necessarily of the form g ( u )  = 0, i.e. U = C where C is a constant depending only on 
q.  This constant can be determined by using the invariance under the action of I :  

(3c  1 
We find C 2  = q:, which leads to two critical manifolds: x y  = -q+ and x y  = +q+. The 
first is the well known equation for the critical temperature of the anisotropic ferromag- 
netic Potts model, usually written in the form (b  - l ) (c  - 1) = q (Baxter 1973). The 
second relation x y  = q+ identifies exactly with the equation recently obtained by 
Baxter (1982a) for the critical temperature of the anisotropic antiferromagnetic case: 
( b  + l ) (c  + 1) = 4 -4. (Note that these two varieties are stable under the duality trans- 
formation D.) 

The automorphic properties can also be used to obtain very quickly the expression 
for the partition function at the ferromagnetic critical temperature (Jaekel and Maillard 
1982a): 

4 (so2: (U, U)--* (U, q + u ) .  

1: (U, U)+ (q:/u,  1 l q : v ) .  

where 
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The same reasoning can be applied to the antiferromagnetic critical case mutatis 
mutandis: the inverse relation, as well as its automorphy factor (c  - 1 ) ( 1 - 4  - c ) ,  
remain the same; the only change is in the symmetry ( s )  which becomes x + y = +4+/x 
instead of x -$ y = -4+/x.  In other words, we see that to obtain the partition function 
in the antiferromagnetic case, we have to replace 4+ by -4. formally (this can indeed 
be checked on the exact solution (Baxter 1982a)). 

This approach unifies the ferromagnetic and antiferromagnetic expressions of the 
partition function, despite differences suggested by physical considerations (entropy, 
etc) (Berker and Kadanoff 1980j. 

2.2. Triangular and simple cubic lattice 

2.2.1, The group structure. Let us consider in parallel the anisotropic Potts model on 
the triangular and on the simple cubic lattice. In contrast to the preceding case, these 
two models are described by three variables denoted respectively by x, y and z ,  and 
corresponding to the couplings in the three different directions. The corresponding 
functional relations take the following forms, which are the same for the two lattices: 

Z(dX, y,  2)) = Z ( x ,  y,  z )  (14 )  
where 7 denotes an arbitrary element of the permutation group of three elements 
Z3. The inverse I and the group Z 3  generate a group G, the structure of which is 
given elsewhere (Jaekel and Maillard 1982b). For our present discussion, we shall 
need only the following property: G has a normal subgroup, denoted by H, generated 
by the transformations 

As can be seen, this subgroup is isomorphic to 2 x 2. 

2.2.2, Critical manifold. Once again we try to find the critical manifold as an algebraic 
variety which is stable under the group G, and which will be given by the equation 
f ( x ,  y, 2)  = 0. Letting U = xy,  U = x / y ,  we re-express the equation of this variety in 
terms of these new variables: cp (U, U, z )  = 0. The action of the element h l :  

h i :  ( U , U , Z ) + ( u , q t U , Z )  ( 1 5 6 )  
implies that cp must be periodic up to a multiplicative factor when considered as a 
function of U. This can occur if, and only if, cp does not depend on U, leading to 

In a similar way, using h2 and another element of G, one is led to write the critical 
variety equation in the form (p2(xz, y )  = 0 and cp3(yz, x )  = 0. The only way for these 
three forms to be compatible is for f to reduce to the equation xyz = C, where C is 
a function of q. C is determined, as in the square lattice case, by the action of I E G. 
We find C 2  = q:, leading to the two varieties: xyz = q: and xyz = -4% The first is 

c p l ( U ,  Z ) ' c p l ( X ,  Y, z )  = 0. 



The inverse relation for the Potts model 357 

the relation conjectured by Wu (1979a, b) for the critical temperature of the ferromag- 
netic Potts model on the triangular lattice. The pertinence of the second as a possible 
equation for the critical temperature of the antiferromagnetic Potts model on the 
triangular lattice is not obvious (see § 3) .  As in the square lattice case, the automorphy 
group leads to the following expression for the partition function at the ferromagnetic 
critical temperature: 

2 when xyz = q+. (As can be verified, expression (17)  is nothing other than the exact 
solution for the triangular lattice obtained by Baxter et a1 (1978)) .  

As can be seen, the preceding analysis on the group structure is common to the 
two lattices. However, the predicted critical varieties xyz = *q’t are excluded by 
precise numerical estimates for the simple cubic lattice (Ditzian and Kadanoff 1979, 
Blote and Swendsen 1979). This leads to the conclusion that in this case the critical 
manifold is definitely not an algebraic one ( a  fortiori, (17)  cannot represent the solution 
at 7-J. This suggests that some profound differences seem to occur on that model 
between d = 2 and d = 3. 

2.3. Generalisation 

Other regular lattices can also be considered. For instance, in the case of the 
honeycomb lattice, the inverse relation, expressed with natural variables x ,  y, z ,  takes 
the form 

I :  ( X , y d ) + ( ~ , L , q  x y  z 

Similar analysis leads to the critical varieties x y z  = C where C 2  = q j ,  giving xyz = -9.- 
and xyz  =q+. The former was conjectured (in another form) by Hintermann et a1 
(1978) as the critical manifold for the anisotropic ferromagnetic Potts model on the 
honeycomb lattice. In addition, it can be checked that it is the dual image (x, y, z )  + 
( -q+/x,  -q+/y,  - q + / z )  of the critical variety on the triangular lattice. More generally, 
the whole analysis (the group structure, the critical partition function, the critical 
manifold, etc) can be deduced by duality from that done for the triangular lattice. 

As a natural extension of the lattices considered above, the same considerations 
apply to the Potts generalisation of the Utiyama model (see figure l (a ) )  (Utiyama 
1951). For this model, we obtain the following results. The inverse relation takes 
the form 

(1, q:, 1, qtj) 
I :  (x, y ,  2 ,  t ) +  - - - - 

x y z  

and the partition function satisfies 

where x ,  y, z and t are defined as in equation (8) .  
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KZ 

(U! ib! 

Figure 1. ( a )  Elementary cell of the generalised Utiyama model: n ,  = n 2  = n3 = n4 = 1. 
( b )  Elementary cell of the king model, discussed in the text: n l  = n 3  = 1, n2 = 2 .  

In addition, 2 is invariant under the action of the Klein group (isomorphic to the 
square group C4"), acting on its arguments x, y,  z and t ) .  The structure of the 
corresponding symmetry group G generated by all symmetry elements is: 0 + Z + G + 
z2 x z2 + 0.  

We will not be surprised to obtain the critical varieties xyz t  = q? (conjectured in 
another form by Wu (1979a, b)) and x y z t  = -4:. It should be noted that the symmetry 
group G here is smaller than that corresponding to previous lattices. Many other 
algebraic varieties exist which are stable under the action of G, but the proposed 
varieties xyz t  = *q? are the only ones consistent with the limiting cases of the square 
lattice ( z  + x, t + y) ,  triangular lattice ( t  + 1) and honeycomb lattice ( t  + -q+). In 
particular, in the Ising limit (q  = 2), we can check that x y z t  = q: is a natural extension 
of the well known formula 

gd(2KI)+gd(2Kz)+gd(2K3)+gd(2K,) =T (Syosi 1972). 

(It should be noticed that the critical manifold for this Potts model cannot be deduced 
in general from the heuristic argument of Svrakic (1980), which is thus valid only at 

The other interesting particular case corresponds to the percolation limit q + 1. 
In this case, q+ = - j  where j3 = 1, and one recovers the critical thresholds which are 
known for bond percolation on square, triangular and honeycomb lattices (Sykes and 
Essam 1964). Of course, the obvious generalisation to anisotropic bond percolation 
can also be considered. 

As in previous cases, we can use the automorphy property of the partition function 
to find its expression at criticality. This problem will be discussed elsewhere (Rammal 
and Maillard 1983). 

q = 2.) 

2.4. Discussion 

The critical variety obtained for the generalised Utiyama model invites us to extend 
this kind of result to more general periodic two-dimensional lattices. Such periodic 
lattices can be viewed as a repetition of an elementary cell having n coupling constants 
K,, i = 1 , 2 ,  . . . , n.  The expected critical manifolds would have the equation 

n 

nx:,=c (21) 
1=1 
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where C denotes some power of 4+, ni is a sequence of integers such that n i / L  ni is 
the concentration of bonds Ki in the elementary cell and xi is defined as in equation 
(8). 

However, this assumption can be ruled out by the example of an Ising model 
(q = 2) having the elementary cell shown in figure l (b ) .  In fact, a direct calculation 
gives the following equation for the critical temperature: K1 + K 3  = 2Kz,  where K ;  
denotes the dual of K2. In terms of the variables xi, this can be written 

Clearly, this critical variety is stable with respect to the two inverse transformations 

and the only geometrical symmetry 

The symmetry group generated by equations (23) and (24) is not rich enough to force 
the critical manifold to have the form (21). 

This last example should not be considered as a serious limitation of the systematic 
study based on the group structure. Each case must be considered separately. The 
method proposed to obtain critical manifolds does not involve any duality or star- 
triangle symmetries (see for instance Burkhardt and Southern 1978). Thus it has to 
be distinguished from all other methods using such arguments. In addition, it must 
be distinguished from the heuristic, interface free energy method, based on the SOS 
approximation (Muller-Hartmann and Zittartz 1977): this approach gives algebraic 
critical varieties in all cases and requires knowledge of interface configurations at zero 
temperature (degeneracy problems, etc). 

3. Lee-Y ang singularities of the partition function 

As analyticity properties seem to be deeply involved in the action of the automorphy 
group, it is tempting to look at the relationship between the group structure and the 
Lee-Yang singularities of the partition function. 

3.1. Lee-Yang theorem for the Potts model, for q 3 4 

The circle theorem of Lee and Yang (1952) for the Ising model in the presence of a 
magnetic field has been generalised to include some vertex models (Suzuki and Fisher 
1971). This result has been extended to the staggered six-vertex model (Hintermann 
er a1 1978) which is known to be equivalent to the Potts model (Temperley and Lieb 
1971). It was then possible to localise the Lee-Yang singularities for 4 2 4 ,  for the 
square, triangular and honeycomb lattices. The singularities are located, using our 
variables x, y and z ,  at 

lxy l -q+l= 1 for the square lattice (25) 

IXYzl(4+)*/ = 1 

Ixyzl-q+l= 1 

for the triangular lattice 

for the honeycomb lattice. 
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As can be seen, the equations of these varieties are extremely simple when expressed 
in these variables. Moreover, these expressions should then reflect the existence of 
a relationship between the group G and the statement of the Lee-Yang theorem. 
The restriction of (25), (26) and (27) to the real axis recovers, for q 3 4 ,  the critical 
manifolds which were obtained in § 2, as it should. A natural extension of the above 
results would then suggest that the Lee-Yang singularities for the generalised Utiyama 
model lie on the following variety (for q L 4): 

Ixyzt/(q+)*I = 1 .  (28) 
The ‘fugacity’ variables for the different Potts models are xy / -q+  (square), xyz / (q+)2  
(triangular) and xyz/-q+ (honeycomb). Hence the conjugate variable of this ‘fugacity’ 
identifies with the internal energy. In this scheme (see table 1) the jump of the internal 
energy in the Potts model (or the latent heat AQ) corresponds to the discontinuity 
of the magnetisation AM at zero field (H  = 0) below the critical temperature in the 
ferromagnetic model. With g denoting the density of zeros on the unit circle, the 
partition function, for the square lattice for instance, can be written 

where g should depend a priori on the anisotropy x /  y .  

Table 1. Correspondence between the Potts model and the ferromagnetic model 

Potts model Ferromagnetic model 

q - 4 3 0  T , - T Z O  
AQ AM 
z = x y l - q ,  z = e H  

Known exact results for the Potts model can be used to provide information on 
the density g. For instance, the expression for the latent heat AQ (Baxter 1973) is 
directly related to the density of zeros at 8 = 0: 

Equation (30) shows that the density of zeros at 6 = 0 is independent of x / y ,  and this 
is the counterpart of the magnetisation being independent of the anisotropy in 
ferromagnetic models. This exact expression (30) shows that g(0, x / y )  has an essential 
singularity at q =4. On the other hand, knowledge of the partition function at the 
critical point xy = -q+ (Baxter 1973) provides the sum rule 

de  ln(1 -e’@)g(6, x / y )  =In Z(x, - q + / x )  I_: 
where Z(x, - 4 + / x )  is given by equation (10). 

The inverse relation obeyed by 2, equation (2), together with the symmetry relation, 
equation (4), can be re-expressed in terms of equations for the density g, and one 
could think of using them to determine the function g. Unfortunately this task is very 
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delicate as can already be seen by considering the simpler example of the one- 
dimensional Ising model with a magnetic field. (In this case an inverse relation occurs, 
the circle theorem holds and the density of zeros g is known exactly.) 

3.2. Lee-Yang theorem for the Potts model, for q < 4 

Let us consider first the case of a square lattice. In general, the relation 

x y / - q +  = ( 0  - q + ) / ( 1 -  vq,)  

U = (bc - 1 ) /  (b  + c + q - 2) 

(32) 

where 

(33) 

leads to the equivalence, when q 2 4,  between 

Ixyl-q+I = 1 and Iv/ = 1.  (34,351 

However, this equivalence fails to hold for q < 4.  We limit ourselves, in the first place, 
to the isotropic case. Equation (34) can be written as Ix 1 = 1 (because 14.1 = l) ,  which 
can be identified with the real axis in the b complex plane. Obviously, this cannot 
be the location of Lee-Yang singulgrities for q < 4.  On the other hand, equation (35) 
is equivalent at q = 2 to Ib f 11 = J2, which is just the equation of the Fisher circles 
(Fisher 1964) for the Ising model. These two circles can be viewed as a 'reappearance' 
of the Lee-Yang circle occurring at q 2 4 .  In general, equation (35)  can be seen to 
be, in the isotropic case, that of the two circles: 

lb - 11 = Jg and l b + l l = J G .  (36) 

The first is called the ferromagnetic circle, and is the only one present for q 2 4 .  On 
the other hand, the second circle is new, and is a natural extension for q < 4  of the 
so called antiferromagnetic Fisher circle. 

Let us remark that each of these two circles is stable with respect to duality 
symmetry b + (b +q - 1) / (b  - 1). Then an approach based on the stability by duality 
can also be used to obtain (36), and in particular the second circle. This second circle 
gives again the correct antiferromagnetic critical temperature U = -1 (Baxter 1982a) 
in contradiction with Ramshaw's (1979) analysis. 

Let us consider now the anisotropic case and the Ising limit q = 2. The locus of 
singularities is given by the equation 

bc - 1 bc - 1 jh+c)2 + 1 - (=)(cos w1 +cos w2)-  

where O < w l ,  w2s27r. This locus is stable by duality, as well as by the symmetry 
group. On the other hand, equation (37) reduces trivially to equation (35) in two 
special cases: the isotropic case ( b  = c )  and for cos w1 =cos w 2  in the anisotropic case. 
Hence equations (37) and (35)  are not equivalent and represent, in general, two 
distinct overlapping sets of points. 

An analogous situation occurs on the triangular lattice even for an isotropic Ising 
model. Figure 2 shows the location of the zeros of the partition function, in the 
complex plane tanh K. This locus contains an arc of the unit circle (e", 101 < i7~) and 
an algebraic curve. 
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Figure 2. Zeros in the complex plane tanh K (=z )  for the triangular lattice for q = 2. 

In general, as for the square lattice, we have equivalence (for q 5 4) between 

/xyz/q2, I = 1 and lw(  = 1 (38739) 

where 

(40) 

It is easy to see that the locus represented by figure 2 is definitely different from the 
q = 2 limit of equation (39) in the isotropic case. 

In conclusion, despite its stability with respect to the action of the symmetry group, 
the locus of singularities for q <4 seems to be quite complicated. SO it is natural to 
investigate first of all the ‘easy’ case of the isotropic square lattice. For this particular 
case, the question is whether or not the singularities actually lie on circles (36) for q < 4. 

(q  - 2)abc +(ab  + bc +ca) - 1 
W =  

(ab +bc + C U )  + ( q  - 2 ) ( a  + b  + c )  + (4 -2)*- 1’ 

3.3. Numerical studies 

We have studied the zeros of the Potts partition function on finite square lattices 
N x N ( N  G 5 ) .  Using a transfer matrix formalism (Temperley and Lieb 1971, Blote 
et a1 1981), it was possible to give a polynomial expression?, in the variables U = b - 1 
and q, for the partition function, with free boundary conditions. In this case, the 
calculation of zeros in the complex U plane, for different real values of q, was not 
conclusive. The scatter of the results obtained was certainly due to small values of 
N (N G 5 )  and also to the boundary conditions. The formalism used in this calculation 
also seems to suffer some fundamental difficulties, especially in the antiferromagnetic 
case. 

In parallel, we used the standard q N  x q N  transfer matrix formalism (q is now an 
integer) with periodic boundary conditions on finite lattices N x N,  N S 6, q S 4. Figure 
3 shows the location of zeros in the b complex plane, at q = 2  and N = 6 .  Already 

t These formal calculations have been performed using AMP computer language, at CEN-Saclay. 
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Figure 3. Location of the zeros in the complex plane 6, for q = 2, on a square N X N_; 
N = 6 with periodic boundary conditions. We have drawn the Fisher circles ib f 1~ = t'2. 

for lattices of this small size, the close approach to the expected asymptotic Fisher 
circles can be seen clearly. Figures 4 and 5 allow a comparison of the results obtained 
for N 4 at q = 2 and q = 3,  respectively. The closeness of the set of zeros to the 
asymptotics circles (equation (36)) is comparable in these two cases. This non-negative 
result suggests an extension of the numerical calculations to more important sizes 
( N  2 6). 

One can envisage more complicated boundary conditions (self-dual lattices for 
instance) in order to reduce the scatter of data. Such a situation occurs at q = 2 
(Branscamp and Kunz 1974), but this kind of boundary condition could damage the 
antiferromagnetic behaviour for q # 2. More generally, it seems that the convergence 

Figure 4. Same as figure 3 but for N = 4, q = 2. 
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Figure 5.-Same figure a s f i g u r e  3 but for N = 4, q = 3. The two circles drawn are 
lb - 11 =\q and lb + 11 =v4-q .  

toward the ferromagnetic circle is plausible and probably correct. If it is true, then 
this calls for some formal proof (as for q 24) of a ‘partial’ circle theorem, in some 
domain of the b complex plane. On the numerical level, the discussion must be 
devoted to the nature of the asymptotic locus of zeros in the antiferromagnetic region: 
line, surface, etc, and then to its comparison with the proposed circle lb + 11 = J G ,  

4. Degeneracy of the group and Tutte-Beraha numbers 

4.1. Degeneracy of the group 

In the general case, the representation of the group G for q >4 leads to an infinite 
discrete group, allowing in particular an infinite product representation of the critical 
partition function. For q s 4 ,  the effect of G is to multiply the variables x, y, z ,  . . . 
by numbers (q+)’ of unit modulus. The group remains infinite in general, but the 
expression of the partition function at the critical temperature becomes a formal one. 
Using an appropriate integral representation of the gamma function, one can then 
recover the known expression at q d 4 (Baxter et a1 1978), which can be considered as 
an analytical continuation of the q > 4 expression. However, for q < 4, G can degener- 
ate, becoming a finite group for special values of q. This situation occurs if an integer 
n exists such that q 

For instance, G becomes isomorphic to ZzOZzn in the square lattice case. For 
these particular values of q, the natural question is whether the expression of the 
critical partition function could be given by a finite product implied by the new 
structure of G. In fact, it is really the case, as can be seen through the identification 
of the critical partition function of the Potts model, with the partition function of the 
six-vertex model (Temperley and Lieb 1971). 

= 1, i.e. q = q n , k  = 2 + 2 cos(2rk/n),  k = 1, 2, . . . , n. 
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It can also be noted that the formal identification of the latter partition function 
with the quantum sine-Gordon S matrix in 1 + 1 dimension allows the same reduction 
to be recovered (Korepin et a1 1975). Indeed, for the sine-Gordon model, there 
exist particular values of the parameter y ( y  = 2 i ~ / n ,  n integer, in correspondence with 
some q n , k )  for which the S matrix becomes a finite product. These special values of 
y also correspond to the appearance of new bound states in the theory. 

Recently Baxter (1982b) has shown that the critical hard-hexagon model corres- 
ponds to the critical Potts model for q = q 5 , 1 =  i(3 + 45). The degeneracy of the group 
G thus casts some lights on the simple expression (finite product of rational terms) 
that can be given to the partition function, when the elliptic uniformisation seemed to 
provide a more complicated result. The same phenomena occur in the three-colouring 
problem (Baxter 1970a, b). These q,,k numbers (or their equivalent) occur in different 
domains of mathematical physics such as the xxz model (Yang and Yang 1966). 

Another manifestation of these 4 n . k  in the Potts model is that, according to den 
Nijs (1979) and Nienhuis et a1 (1980) critical exponents become rational numbers if, 
and only if, q = q , , k ;  this seems to be strongly supported by numerical analysis. 

4.2.  Connection with colouring problems in graph theory-Tutte-Beraha numbers 

The q n , k  numbers also seem to play a relevant role in the problem of the zeros of 
chromatic polynomials. The equivalence between Whitney polynomials and Potts 
partition functions is a well known property (Baxter et a1 1976). A limit of the 
Whitney polynomial then gives the chromatic polynomial which corresponds to the 
antiferromagnetic Potts model at zero temperature. On a finite graph, the chromatic 
polynomial P ( q ) ,  where q is the number of colours, is the number of ways of colouring 
the vertices of the graph without having the same colour for two adjacent vertices. 
Historically, the investigation of zeros of chromatic polynomials was an analytical 
approach to the four-colour problem in graph theory (Tutte 1975). Investigations of 
the location of the zeros of special families of chromatic polynomials (Beraha et a1 
1980, Hall et a1 1965) have shown up the occurrence of the numbers q = B, = 
2 + 2 cos 2 ~ / n  (called Tutte-Beraha numbers) as special zeros of P ( q ) .  Depending 
on the map studied, some B, appear as isolated zeros or as real limits of complex 
zeros (non-isolated zeros) at the infinite graph limit. Up to now, B, for n = 1-10 
have been identified numerically or proved to occur (Tutte 1975). 

The possible occurrence of the general numbers q n , k  (including B,) as non-isolated 
zeros of chromatic polynomials, on more general lattices, such as square, triangular 
or simple cubic, must be elucidated. Two distinct approaches can be used for this 
task. The first is identical to that discussed in § 3 and consists of calculating the 
chromatic polynomials on N x N square lattices. The results that we have obtained 
for N c 5 are very similar to those of Biggs et a1 (1972). The set of zeros seems to 
converge, by increasing N, towarl a curve having the shape of a cardoid. 

The second approach is based on the transfer matrix formalism used for strips. 
However, two such formalisms exist. The first is specific to chromatic polynomials 
and adapted to well behaved maps, called recursive maps (figure 6) (Beraha et a1 
1980). The other method (Biggs and Meredith 1976) is more general and also identical 
to that currently used in the context of the Potts model (Blote et a1 1981). In its 
actual form, this method has serious problems in the antiferromagnetic Potts model, 
and so is ill-adapted to study the chromatic polynomials. Thus it would be interesting 
to extend the preceding study to finite lattices of increasing size ( N  > 5), in order to 
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Figure 6. Example of map (called a four-ring) in a recursive family. The inner and outer 
regions are to be considered as proper regions. 

look at the positions of limit zeros on the real axis. Such a study should also be 
extended to lattices in three dimensions, where B, numbers could appear. 

5. Conclusion 

We now summarise the main points given in this paper. We have indicated some 
consequences of the existence of the symmetry group G for the Potts model. Using 
this new method, we are able to recover, in a systematic way, all exact or conjectured 
critical varieties in the literature without using duality or star-triangle arguments. In 
particular, we have indicated that the critical manifold cannot be algebraic for the 
three-dimensional Potts model. On the other hand, we have noticed the close connec- 
tion between the ferromagnetic and antiferromagnetic partition functions on the square 
lattice. 

We have also shed some light on the relationship between the Lee-Yang theorem, 
valid for q 2 4 ,  and the group structure of the Potts model. In the case of the square 
lattice the Fisher circle at q = 2 has been identified as a reappearance of the q 3 4  
Lee-Yang circle. This ‘continuation’ suggests that the Lee-Yang singularities for 
q < 4 could lie on two circles which are the generalisation of the Fisher circles for q = 2. 

We have presented some physical implications associated with the degeneracy of 
the symmetry group, for special values of q, as well as the relevance of these numbers 
in colouring problems in graph theory (chromatic polynomials, Tutte-Beraha numbers, 
etc). 

These ideas suggest further numerical and analytical investigations. It would be 
interesting to extend the numerical study of the Lee-Yang (in b )  and Tutte-Beraha 
(in q )  zeros to more general lattices, and in particular to three dimensions. Special 
attention should be given to the antiferromagnetic case (generalised Fisher circle ?). 
This approach is sufficiently general to treat other models (vertex models, etc) and 
lattices (Kagome, etc). The existence of some ‘partial’ Lee-Yang theorem at q < 4  
could be elucidated. Finally, an open question is to know whether critical exponents 
could be calculated using the group structure of the Potts model, 



The inverse relation for the Potts model 367 

Acknowledgments 

We are grateful to Professor R J Baxter and Dr M T Jaekel for most helpful discussions, 
valuable comments and stimulating conversations. We are indebted to Professor T 
Lubensky and Dr J Vannimenus for criticisms of earlier drafts of this paper. The 
authors would like to thank Professor G Toulouse for hospitality in his group at Ecole 
Normale SupCrieure. 

References 

Baxter R J 1970a J.  Math. Phys. 11 784-9 

- 1973 J.  Phys. C: Solid Stare Phys. 6 L445-8 
- 1982a Proc. R .  Soc. A 383 43-54 
- 1982b The inverse relation method for some two-dimensional exactly soloed models in lattice statistics, 

Baxter R J, Kelland S B and Wu F Y 1976 J. Phys. A: Math. Gen. 9 397-406 
Baxter R J, Temperley H N V and Ashley S E 1978 Proc. R. Soc. A 358 535-59 
Beraha S, Kahane J and Weiss N J 1980 J.  Comb. Theory B 28 52-65 
Berker A N and Kadanoff L P 1980 J. Phys. A: Math. Gen. 13 L259-64 
Biggs N L, Damerell R M and Sands D A 1972 J. Comb. Theory B 12 123-31 
Biggs N L and Meredith G H J 1976 J .  Comb. Theory B 20 5-19 
Blote H W J, Nightingale M P N and Derrida B 1981 J.  Phys. A: Math. Gen. 14 L45-9 
Blote H W J and Swendsen. R H 1979 Phys. Reo. Lett. 43 799-802 
Branscamp H J and Kunz H 1974 J. Math. Phys. 15 65-6 
Burkhardt T W and Southern V W 1978 J.  Phys. A: Math. Gen. 11 L247-51 
Ditzian R V and Kadanoff L P 1979 J. Phys. A: Math. Gen. 12 L229-33 
Fisher M E 1964 Lecture in Theoretical Physics vol 7c (Boulder: University of Colorado Press) 
Hall D W, Siry J W and Vanderslice B R 1965 Proc. Am. Math. Soc. 16 620-8 
Hintermann A, Kunz H and Wu F Y 1978 J. Stat. Phys. 19 623-32 
Jaekel M T and Maillard J M 1982a J.  Phys. A: Math. Gen. 15 2241-57 
- 1982b J .  Phys. A: Math. Gen. 15 2509-13 
Korepin V E, Kulish P P and Fadeev L D 1975 JETPLert. 21 138-9 
Kramers H A and Wannier G H 1941 Phys. Reu. 60 252-62 
Lee T D and Yang C N 1952 Phys. Ren. 87 410 
Muller-Hartmann E and Zittartz J 1977 2. Phys. B 27 261-6 
Nienhuis B, Riedel E K and Schick M 1980 J.  Phys. A: Math. Gen. 13 L189-92 
den Nijs M P M 1979 J.  Phys. A: Math. Gen. 12 1857-68 
Rammal R and Maillard J M 1983 Q-state Potts model on the checker-board lattice, J .  Phys.  A :  Math. Gen. 

Ramshaw I D 1979 J.  Phys. A: Math. Gen. 12 L271-3 
Suzuki M and Fisher M E 1971 J.  Math. Phys. 12 235-46 
Svrakic N M 1980 Phys. Lett. 80A 43-4 
Sykes M F and Essam J W 1964 J. Math. Phys. 8 11 17-27 
Syosi I 1972 Phase Transitions and Critical Phenomena ed C Domb and M S Green (London: Academic) 

Temperley H N V and Lieb E H 1971 Proc. R.  Soc. A 322 2.5-80 
Tutte W T 1975 Studies in Graph Theory, Part I I  ed D R Fulkerson (The Mathematical Association of 

Utiyama T 1951 Prog. Theor. Phys. 6 907-9 
Wu F Y 1979a J .  Phys. C: Solid State Phys. 12 L317-20 
- 1979b J.  Phys. C: Solid State Phys. 12 L645-50 
_. 1982 Rev. Mod. Phys. 54 235-68 
Yang C N and Yang C P 1966 Phys. Rer .  150 327-39 

- 1970b J.  Math. Phys. 11 3116-24 

J.  Stat. Phys. to appear 

16 to appear 

vol 1, p 323 

America) pp 361-77 


